nn Module
Ultralytics nn module contains 3 main components:
- AutoBackend: A module that can run inference on all popular model formats
- BaseModel:
BaseModel
class defines the operations supported by tasks like Detection and Segmentation - modules: Optimized and reusable neural network blocks built on PyTorch.
AutoBackend
Bases: nn.Module
Source code in ultralytics/nn/autobackend.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
|
__init__(weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True)
MultiBackend class for python inference on various platforms using Ultralytics YOLO.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights |
str
|
The path to the weights file. Default: 'yolov8n.pt' |
'yolov8n.pt'
|
device |
torch.device
|
The device to run the model on. |
torch.device('cpu')
|
dnn |
bool
|
Use OpenCV's DNN module for inference if True, defaults to False. |
False
|
data |
dict
|
Additional data, optional |
None
|
fp16 |
bool
|
If True, use half precision. Default: False |
False
|
fuse |
bool
|
Whether to fuse the model or not. Default: True |
True
|
Supported formats and their naming conventions
Format | Suffix |
---|---|
PyTorch | *.pt |
TorchScript | *.torchscript |
ONNX Runtime | *.onnx |
ONNX OpenCV DNN | *.onnx --dnn |
OpenVINO | *.xml |
CoreML | *.mlmodel |
TensorRT | *.engine |
TensorFlow SavedModel | *_saved_model |
TensorFlow GraphDef | *.pb |
TensorFlow Lite | *.tflite |
TensorFlow Edge TPU | *_edgetpu.tflite |
PaddlePaddle | *_paddle_model |
Source code in ultralytics/nn/autobackend.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
forward(im, augment=False, visualize=False)
Runs inference on the YOLOv8 MultiBackend model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im |
torch.Tensor
|
The image tensor to perform inference on. |
required |
augment |
bool
|
whether to perform data augmentation during inference, defaults to False |
False
|
visualize |
bool
|
whether to visualize the output predictions, defaults to False |
False
|
Returns:
Type | Description |
---|---|
tuple
|
Tuple containing the raw output tensor, and the processed output for visualization (if visualize=True) |
Source code in ultralytics/nn/autobackend.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
from_numpy(x)
Convert a numpy array to a tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
np.ndarray
|
The array to be converted. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor
|
The converted tensor |
Source code in ultralytics/nn/autobackend.py
warmup(imgsz=(1, 3, 640, 640))
Warm up the model by running one forward pass with a dummy input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
imgsz |
tuple
|
The shape of the dummy input tensor in the format (batch_size, channels, height, width) |
(1, 3, 640, 640)
|
Returns:
Type | Description |
---|---|
None
|
This method runs the forward pass and don't return any value |
Source code in ultralytics/nn/autobackend.py
BaseModel
Bases: nn.Module
The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.
Source code in ultralytics/nn/tasks.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
forward(x, profile=False, visualize=False)
Forward pass of the model on a single scale.
Wrapper for _forward_once
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
torch.Tensor
|
The input image tensor |
required |
profile |
bool
|
Whether to profile the model, defaults to False |
False
|
visualize |
bool
|
Whether to return the intermediate feature maps, defaults to False |
False
|
Returns:
Type | Description |
---|---|
torch.Tensor
|
The output of the network. |
Source code in ultralytics/nn/tasks.py
fuse()
Fuse the Conv2d()
and BatchNorm2d()
layers of the model into a single layer, in order to improve the
computation efficiency.
Returns:
Type | Description |
---|---|
nn.Module
|
The fused model is returned. |
Source code in ultralytics/nn/tasks.py
info(verbose=False, imgsz=640)
Prints model information
Parameters:
Name | Type | Description | Default |
---|---|---|---|
verbose |
bool
|
if True, prints out the model information. Defaults to False |
False
|
imgsz |
int
|
the size of the image that the model will be trained on. Defaults to 640 |
640
|
Source code in ultralytics/nn/tasks.py
is_fused(thresh=10)
Check if the model has less than a certain threshold of BatchNorm layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
thresh |
int
|
The threshold number of BatchNorm layers. Default is 10. |
10
|
Returns:
Type | Description |
---|---|
bool
|
True if the number of BatchNorm layers in the model is less than the threshold, False otherwise. |
Source code in ultralytics/nn/tasks.py
load(weights)
This function loads the weights of the model from a file
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights |
str
|
The weights to load into the model. |
required |
Source code in ultralytics/nn/tasks.py
Modules
TODO