Detection
Object detection is a task that involves identifying the location and class of objects in an image or video stream.
The output of an object detector is a set of bounding boxes that enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape.
Tip
YOLOv8 detection models have no suffix and are the default YOLOv8 models, i.e. yolov8n.pt
and are pretrained on COCO.
Train
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see the Configuration page.
Val
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the model
retains it's
training data
and arguments as model attributes.
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.pt") # load an official model
model = YOLO("path/to/best.pt") # load a custom model
# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # a list contains map50-95 of each category
Predict
Use a trained YOLOv8n model to run predictions on images.
Read more details of predict
in our Predict page.
Export
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
Available YOLOv8 export formats include:
Format | format= |
Model |
---|---|---|
PyTorch | - | yolov8n.pt |
TorchScript | torchscript |
yolov8n.torchscript |
ONNX | onnx |
yolov8n.onnx |
OpenVINO | openvino |
yolov8n_openvino_model/ |
TensorRT | engine |
yolov8n.engine |
CoreML | coreml |
yolov8n.mlmodel |
TensorFlow SavedModel | saved_model |
yolov8n_saved_model/ |
TensorFlow GraphDef | pb |
yolov8n.pb |
TensorFlow Lite | tflite |
yolov8n.tflite |
TensorFlow Edge TPU | edgetpu |
yolov8n_edgetpu.tflite |
TensorFlow.js | tfjs |
yolov8n_web_model/ |
PaddlePaddle | paddle |
yolov8n_paddle_model/ |